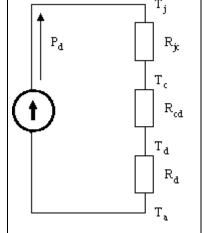
RESUMEN Y CÁLCULO DE DISIPADORES

NOTA: Es fundamental leer previamente el apunte de disipadores DISIPADORES.PDF

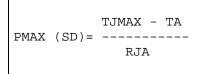
ENTRODUCCION: El calor generado por un dispositivo durante su funcionamiento, encuentra en su camino hacia el ambiente distintos impedimentos, a estos impedimentos le llamaremos resistencias térmicas. El calor encuentra una primera resistencia cuando pasa de la juntura a la carcaza RJC, una segunda resistencia entre la carcaza y el disipador (si este existe) RCD y una tercera entre el disipador y el ambiente RDA (en el apunte DISIPADOR.PDF se llama Rd a RDA). Obtenida esta RDA, es posible entrar a catálogos y seleccionar el disipador adecuado.

EL MODELO


Como para la resolución de circuitos contamos con muchos métodos, se establece un modelo equivalente entre este fenómeno de transmisión de calor y un circuito como el de la figura.

- POTENCIA equivalente CORRIENTE(fuente de corriente)
- TEMPERATURA equivalente TENSION
- RESISTENCIA TERMICA equivalente RESISTENCIA ELECTRICA

Así :


Donde RT = RJC + RCD + RDA y la incógnita será RDA

(Simplemente se aplico ley de Ohm)

CUANDO DEBEMOS USAR DISIPADOR ?

Utilizando la siguiente formula podemos conocer cual es la potencia máxima que puede disipar el dispositivo *sin disipador*:

TJMAX Temperatura de juntura máxima (sale de hoja de datos o aproximadamente por TABLA 1).

TA Temperatura ambiente (donde se encuentra el dispositivo, puede ser mayor dentro de un gabinete).

RJA Resistencia térmica juntura ambiente (hoja de datos o aproximadamente de TABLA 2).

Si la que va disipar el dispositivo en nuestro circuito es igual o mayor que esta, entonces es fundamental agregar un disipador. Atención que se usó TJmax.

CALCULO

TJ depende de dispositivo (ver máximos típicos TABLA1), TJMAX se toma de hoja de datos del dispositivo, sin embargo siempre se debe trabajar con un margen de seguridad K (ver en TABLAS).

Ejemplo: TJMAX = 200 °C con K = 0,5 implica que en nuestro cálculo será TJ = 100 °C.

 $\mbox{{\it RJC}}$ depende del dispositivo (se busca en la hoja de datos o típicos en TABLA 2). Ejemplo: para el 2N3055 vale 1,52 °c/w.

RCD depende del contacto entre la carcaza del dispositivo y el disipador. Por lo tanto también depende del encapsulado o carcaza. Buscar en la TABLA 3. Ejemplo: Para el TO.3 que es el encapsulado del 2N3055 será RCD = 0,12°c/w.

RDA es la incógnita que debemos encontrar.

Supongamos que el dispositivo en nuestro circuito debe disipar 25W, entonces:

Despejando:

En el ejemplo que estamos calculando:

P = 25W TJ = 100 °C TA = 30 °C RJC = 1,52 °c/w RCD = 0,12°c/w

Calculando resulta: RDA = 1,16 °c/w

1

DEBEMOS BUSCAR EN CATALOGOS SUMINISTRADOS POR FABRICANTES DE DISIPADORES ALGUN DISIPADOR QUE TENGA UNA RESISTENCIA TERMICA CON EL VALOR QUE ACABAMOS DE CALCULAR Rth =1,16 °c/w

IMPORTANTE: Podemos elegir algún disipador que tenga una resistencia térmica menor a la calculada, esto simplemente provocaría que en las mismas condiciones de calculo, la temperatura de juntura sea menor a la deseada.

NO DEBEMOS ELEGIR UNO QUE TENGA UNA RESISTENCIA TERMICA MAYOR, ya que esto implicaría aumentar la temperatura de juntura de trabajo.

COMENTARIOS:

Existe mucha literatura sobre el tema de disipadores, incluso hay ábacos que permiten determinar las dimensiones de determinado perfil conociendo la potencia a disipar.

Hay formulas que permiten calcular conociendo la resistencia térmica del disipador necesario, su superficie en cm cuadrados, pero NO ES ACONSEJABLE utilizarlas, salvo para pequeños disipadores en forma de U , ya que las características de un disipador no solo dependen de la superficie del mismo sino de la forma, material, color de la superficie y posición.

Estas fórmulas son: