

SIMULADOR PROTEUS – MÓDULO 🗵

GRÁFICOS (GRAPHS)

Para insertar las graficas en los circuitos a simular, se activa el icono

En este modo se encuentran las siguientes opciones:

GRAFICA ANÁLOGA (ANALOGUE)

Grafica voltajes y corrientes con respecto al tiempo sin limites de frecuencia, permite realizar operaciones aritméticas de las señales. Para graficar las señales es indispensable conectar al circuito probadores (Voltaje y/o corriente)

Pasos para realizar la grafica

1. Insertar los probadores donde se desea observar la señal

2. Del menú seleccionar *analogue*, ir al área de trabajo y con clic sostenido dibujar un cuadro, y luego soltar. Aparecerá una cuadro como el siguiente:

Ob

2

DMD

3. Arrastrar las etiquetas de los probadores hasta el interior del cuadro

4. Ejecutar y detener la simulación : luego oprimir la barra espaciadora para realizar las graficas:

Pasos para editar las señales graficadas:

1. Para ver de mayor tamaño la ventana de análisis se da doble clic en la grafica o clic derecho, se despliega el menú y se selecciona Maximize (Show Window).

2. En este formato, aparecen nuevos iconos en el extremo inferior de la gráfica

La edición de la grafica, permite colocar el nombre a los ejes X-Y, cambiar la base del tiempo para ver menos períodos y colocarle titulo al grafico

	Edit Transient Graph	Cambiar titulo del grafico RECTIFICADOR DEMEDIA ONDA
Eie Y>	Graph title: ANALOGUE ANALYSIS Start time: 0 Tiempo de inici Stop time: 1 Left Axis Label: Tiempo de parada Bight Axis Label: 1s: Cambiar por 2	User defined properties:
	Options Eje X Initial DC solution: ✓ Always simulate: ✓ Log netlist(s): ✓ SPICE Options ✓ Set Y-Scales ✓	K Cancel

3

Este tipo de gráficos permite exportar los datos de la simulación a un archivo de texto, para luego abrirlo con Notepad, por defecto trae 50 pasos: Graph Source Debug Library Template System He

- Clic en el menú Graph/Export Data
- Guarde el archivo
- Abrirlo con notepad

Graph	Source	Debug	Library	Template	System	Help			
🧱 Edit Graph									
📩 Add Trace					Ctrl+A				
📑 Simulate Graph					Barra-Espaciadora				
🥁 View Log				Ctrl	Ctrl+V				
Export Data									
⊆lear Data									
<u>C</u> onformance Analysis (All Graphs) <u>B</u> atch Mode Conformance Analysis									

OPERACIONES ARITMÉTICAS: Con esta opción es posible realizar sumas, productos, diferencias de las señales. Como ejemplo vamos a calcular gráficamente la potencia de una resistencia, en este caso R1

Tenemos

- Los probadores V1=32V y V2=12V que me definen el voltaje en la resistencia R1 que es de 20V (diferencia de voltaje entre V1 y V2)
- El probador IR1, indica la corriente que circula por esta misma resistencia, IR1= 4A
- Sabemos por ley de watt que P=VxI, entonces P(R1)=80W

La grafica de voltaje y corriente por R1 es

Ahora, maximizamos la grafica y clic en el icono adicionar trazas

Add Transient Trace		Add Transient Trace		? 🛛	
Name:	J	Irace Type:	Name:	POTENCIA	<u>T</u> race Type:
Probe P <u>1</u> :	<none></none>	C Digital	Probe P <u>1</u> :	V1 •	Digital Phasor
Probe P <u>2</u> :	<none></none>	Noise	Probe P <u>2</u> :	V2 •	Noise
Probe P <u>3</u> :	<none></none>		Probe P <u>3</u> :	I(R1) 💌	
Probe P <u>4</u> :	<none></none>	A <u>8</u> N ▲ Left	Probe P <u>4</u> :	<none></none>	A <u>xis:</u>
<u>E</u> xpression:		Right	<u>E</u> xpression:	(P1·P2)*P3	♦ Bight
		Reference			Reference
	<u></u>	< <u>C</u> ancel		<u> </u>	Cancel

Diligenciamos los datos requeridos:

- Name: nombre de la grafica.
- Probe P1, P2, P3 y P4: de la pestaña de selección escogemos la etiqueta del probador que vamos a utilizar.
- Expression: en este campo se digita la operación aritmética.
- Seleccionar Right, de Axis para activar la escala al lado derecho de la • grafica y poner la etiqueta de la grafica de potencia; clic en OK
- Por ultimo barra espaciadora para refrescar la simulación •

6

GRAFICA DIGITAL

Para graficar señales digitales se debe seleccionar digital del menú graph y seguir los mismos pasos de la grafica análoga. *Ejemplo:* el siguiente circuito es un oscilador astable con un 555.

Grafico Digital:

Eje de

En este tipo de grafico es posible observar los estados lógicos, solo con un clic dentro del área, luego aparecerá un cursor, el cual puede desplazarse a la izquierda o derecha, mostrando al lado de la etiqueta el estado lógico (H=Alto o L=Bajo).

En la parte inferior también indica la posición exacta (coordenada) en la que se encuentra el cursor, en el eje x (el eje de tiempo) y en el eje y (eje de niveles lógicos).